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The unsteady motions of a viscoelastic medium are considered, taking account of a small anisotropy and a small non-linearity. 
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It is well known [l-3] that the solutions of the self-similar problem of a piston and the decomposition 
of an initial discontinuity are non-unique for a wide class of elastic media and initial conditions. In this 
case, shock waves exist to which a second solution of the problem of the decomposition of a discontinuity 
corresponds, which consists of a system of shock waves and simple waves moving with different velocities. 
This means that, generally speaking, the initial shock wave can decompose into the above-mentioned 
system of waves. We shall call such shock waves metastable shock waves. If they are excluded when 
constructing the solutions, then the solutions of the problems of elasticity turn out to be unique. 

Their instability could serve as a basis for the above-mentioned exclusion of metastable shock 
waves. The stability of fast shock waves, including metastable shock waves, has been proved in the 
linear approximation [4]. However, non-linear instability of a shock wave occurs, which manifests 
itself in the form of their non-linear decomposition when they interact with perturbations. In order to 
investigate the possibility of such a decomposition, it is necessary to include mechanisms which “spread” 
discontinuities. 

In a Voigt viscoelastic medium, a continuous travelling wave [3] corresponds to each shock wave. 
This wave is called the shock wave structure [5]. The interaction of the structure of a metastable shock 
wave with spatially bounded, one-dimensional perturbations with the same orientation as the metastable 
shock wave in question has been investigated previously [6,7] using numerical experiments. In this case, 
the asymptotic forms of the solutions when t + 00 corresponded to one of the two self-similar solutions 
of the problem of the decomposition of a discontinuity in the domain of non-uniqueness. It was shown 
that interaction with a background inhomogeneity or with another one-dimensional wave can lead to 
the irreversible decomposition of the metastable shock wave such that, after the interaction, a system 
of waves is generated which corresponds to the second solution of the problem of the decomposition 
of a discontinuity, mentioned above. It has been revealed that, for decomposition such a to exist it is 
necessary, first, that the amplitude of the perturbations should be comparable in magnitude with the 
amplitude of the metastable shock wave and, second, that, after the interaction, the newly formed waves 
have succeeded in separating to a distance which is greater than the width of the structure of the 
metastable shock wave in question. 

In spite of the fairly rigorous conditions which are necessary in order for decomposition of the 
metastable shock wave to occur, it remained possible to assume that, during the motion through a 
random background, a metastable shock wave will sooner or later encounter a sufficiently large 
perturbation which will destroy it. On account of this, it is of interest to investigate, in the same 
formulation as earlier in [6, 71, the interaction of a metastable shock wave with non-one-dimensional 
perturbations. 

The results of a numerical solution of two-dimensional viscoelastic problems of the interaction of a 
metastable shock wave, with fairly slowly changing perturbations, which are periodic with respect to 
the tangential coordinate, are presented below. The results of the solution of these problems show that, 

tPrik1. Mat. Mekh. Vol. 66, No. 1, pp. 109-117,2002. 

107 



108 A. G. Kulikovskii and A. F? Chugainova 

if there is a sufficiently large segment of the unperturbed metastable shock wave, then the decomposition 
of the metastable shock wave into a system of waves is reversible that is, after a time, the solution obtained 
is restored to the solution that corresponds to the initial metastable shock wave. This indicates the 
high stability of the metastable shock wave and the possibility of healing the wounds inflicted on it by 
the strong, but spatially bounded, external actions. These results suggest that metastable shock waves 
actually exist. 

1. ONE-DIMENSIONAL UNSTEADY SOLUTIONS. DESCRIPTION OF 
THE SOLUTIONS IN THE DOMAIN OF NON-UNIQUENESS 

The weakly non-linear quasitransverse waves, which propagate over a homogeneous background in the 
positive direction of the x axis in the case of a medium of small anisotropy, can also be described by a 
simplified system of equations, which follows from the system of equations of the non-linear theory of 
elasticity [3, 81, namely 

0 ; jJ_ Wu,,u,) = a2u, au 
at ax ( 1 au, “ax2 

cx = 1,2, CI “=- 
2Pl-l 

1 +p4: -u;)-;x(u: +u,zy 

(1.1) 

(1.2) 

Here g > 0 is the anisotropy parameter, a is the characteristic velocity when there is no non-linearity 
and anisotropy (x = 0, g = 0), x is a constant with the dimension of velocity, which characterizes the 
non-linear effects and v is the kinematic coefficient of viscosity. The sign of the elastic constant x has 
a substantial effect on the behaviour of the quasitransverse simple waves and the shock wave. The case 
when x > 0 is considered below. 

When there is no viscosity (v = 0), system (1.1) is of the hyperbolic type and has two families of 
characteristics, fast and slow, with velocities cl =S c2. The evolutionary shock waves are 
correspondingly separated into fast and slow shock waves. It has already been mentioned that, when 
there is no viscosity, the problem of “a piston” has a non-unique solution [2]. Two different systems of 
self-similar waves can correspond to one and the same initial conditions U, = U, (point A in Fig. 1) 

Fig. I 
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when t = 0, x > 0 and boundary conditions u, = u: when x = 0, t > 0 if the point with coordinates UT 
and uz, which specify the boundary conditions, belongs to the domain of non-uniqueness (shown hatched 
in Fig. 1). The geometry of the domain of non-uniqueness depends on the parameters Ui, Uz, g and x. 

The numerically constructed shock adiabatic curve AFPEQkXJ of the quasitransverse shock waves 
with a starting point A(l, 1) for a medium with x = 1, g = 0.03 is shown in Fig. 1. The points of the 
segments AJ and EK are states behind the evolutionary fast shock waves and the points of the segment 
AF are states behind the slow shock waves. The domain of non-uniqueness of the solutions (the domain 
of values of U: for which there are two solutions) is bounded by the segment PE of the shock adiabatic 
curve with starting point A and, also, by the segment QP of the shock adiabatic curve, constructed from 
point Q as the starting point, which corresponds to slow shock waves, as well as by the segments EZ1 
and QZ, of the integral curves of the simple non-reversing slow waves. The point Q is determined by 
the following condition: the velocity W of the shock wave A + Q is equal to the velocity of the shock 
wave A + J (if U1 and U, are sufficiently large, X( U: + U:) > 2g, for example, then such a point exists). 

For the media being considered with x > 0, one of the solutions in the domain of non-uniqueness 
(the solution of the first type) consists of a fast shock wave, which is represented in the ul, u2 plane by 
a jump from point A to a point of the evolutionary segment QE (this is the same metastable shock wave 
mentioned earlier), and a slow shock wave or simple wave following behind it. The second system (the 
solution of the second type) when x > 0 contains a “complex” fast wave, consisting of a fast Jouguet 
shock wave A --+ .I (the point J is the Jouguet point with respect to a state behind the jump at which 
W = Ci), a fast simple wave J + L and a fast Jouguet shock wave L + M (the Jouguet condition 
W = C; is satisfied at the point L, which characterizes a state in front of the discontinuity). A slow 
shock wave or simple wave propogates behind the complex fast wave at a lower velocity. Such a solution, 
if it is constructed for a certain point on the segment QE of the shock adiabatic curve, is the system of 
waves which arise if the corresponding metastable shock wave is decomposed. 

2. THE TWO-DIMENSIONAL UNSTEADY MOTIONS OF ELASTIC AND 
VISCOELASTIC MEDIA 

We shall use the simplified systems of equations derived in [4] to describe the two-dimensional unsteady 
motions of a viscoelastic medium when all the required quantities depend on the time t and the 
Lagrangian coordinate x and depend only slightly on the Lagrangian coordinate y (in the initial state 
x and y coincide with the Cartesian coordinates x3 and x2 respectively). 

(2.1) 

The left-hand sides of Eqs (2.1) and (1.1) are identical. The first term on the right-hand side of 
Eqs (2.1) describes the effect of viscosity, the second term on the right-hand side of Eqs (2.1) which 
takes into account the interaction with respect toy, has the same form as the corresponding terms in 
the Kadomtsev-Petvriashvili and Khokhlov-Zabolotskaya equations [lo]. 

In the calculations, the value ofx in front of the system of waves being studied, where it can be assumed 
that u1 and u2 take the unperturbed constant values, is chosen as x0. 

Equations (2.1) represent the behaviour of the solutions in a system of coordinates moving in the 
positive direction of the x axis relative to the initial system of coordinates at a constant velocity a-f, 
where a is the velocity of the characteristics relative to the medium in the linear isotropic approximation 
which occurs in expression (1.2). The quantity f will subsequently be chosen from considerations of 
convenience. Here, the linear and non-linear terms on the left-hand side of system (2.1) are found to 
be of the same order. The coefficients g, X, v and m can take any values if the units of measurement 
u,, x, t and y are dealt with in a suitable manner. 

According to the results obtained earlier in [4], the equality m = a/2 holds in the initial, untransformed 
variables. The ratio of the last term (which takes account of the effect of non-one-dimensionality) in 
Eqs (2.1) to the non-linear term on the left-hand side is equal to (alAa)(Lf/Lf,) in order of magnitude. 
Here, Aa denotes the quantity xu2, which characterizes the change in the velocity of the characteristics 
accompanying the effect of non-linearity (u is the characteristic size of the quantities u, and L,, L,, are 
the characteristic dimensions with respect to the variablesx andy respectively). Here, it has been assumed 
that ha/a G 1 (a slight non-linearity) and that Lf/L$ @ 1 (closeness to the one-dimensional case). Since 
the sense of these strong inequalities allows a large degree of arbitrariness, the (last) spatial term in 
Eqs (2.1) can be both small with respect to the remaining terms as well as quite large. 
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We will now estimate the order of magnitude of the term responsible for the non-one-dimensionality, 
starting from the assumption that the viscous and non-linear terms are of the same order of magnitude 
as the values in the one-dimensional case. We then obtain that the characteristic scale of the change 
in the quantities with respect to the x axis is equal to Lx - vI(xu2), and the order of magnitude of the 
non-linear term is determined by the expression x2u5/v. The ratio of the “spatial” term to the non-linear 
term in Eqs (2.1) turns out to be equal in order of magnitude toM = n~v~/(L$~~d). The dimensionless 
parameter M characterizes the intensity of the interaction of the different segments of the wave with 
one another with respect to the variable y. 

Problems are considered below in which u - 1 and the estimate obtained enables us to compare the 
results of different versions of the calculation with one another. In particular, a decrease in m is 
equivalent to an increase in the scale Ly, which characterizes the dependence of the solution ony. 

3. DESCRIPTION OF THE NUMERICAL EXPERIMENTS 

The results of the numerical solution of a number of initial-boundary-value problems for Eqs (2.1), for 
which the self-similar solutions described in section 1 represent the asymptotic forms when t + 00, are 
presented below. 

The equations were written in the form of implicit non-linear difference equations which were 
linearized using Newton’s method and solved by the matrix sweep method [ll]. The integrals on the 
right-hand sides of Eqs (2.1) were calculated by the method of rectangles and the values of the functions 
ui(t, x, y) and u2(t, x, y) in the integrand were assumed to be equal to the values of these functions in 
each preceding iteration. 

The coefficient v in system (2.1) was chosen in such a way that the term vd2u,/dx2, which describes 
the physical viscosity, was significantly greater than the computational errors which arise when solving 
difference equations approximating a differential problem. 

The initial-boundary-value problem on the interaction of a metastable shock wave (a wave of the 
type Q,?Z), which is represented by the jump A + B (Fig. l), with a two-dimensional perturbation is 
formulated in the following manner. The system of equations (2.1) is solved in the domain 0 c x c 1, 
O~y~L,t~O.Th b e oundary conditions are specified in the form 

x = 1, y > 0: u, = U, (point A); x=0, y>O: u, = ui (point B) 

y=o, y=L, ocx<[: &A,/ily=o 

The initial conditions (t = 0,O c x c 1) are specified in the form 

0 < y s y,: ua = ui2'(x); y, c y c L: u, = u:‘(x) 

(3.1) 

In connection with the formulation of the boundary conditions, we note that the specification of the 
boundary conditions when y = 0 and y = k in the form of the derivatives with respect toy being equal 
to zero ensures the possibility of a periodic (with period 2L) extension of the solution with respect to 
y. The boundary conditions when x = L correspond to the state in front of the wave, which is a fast 
wave, so that the state at a sufficient distance ahead of the wave can be assumed to be unperturbed. 

In choosing the initial data (the functions u&“(x) and c@(x)), use was made of the results in [7], in 
which the problem of the interaction of a metastable shock wave with the inhomogeneity of the 
background was considered in a one-dimensional formulation. In [7], the inhomogeneity of the 
background was specified by the change in the coefficient g over a certain time interval z (the time of 
the interaction between the metastable shock wave and the inhomogeneity). An increase in the parameter 
g was produced such that, if the magnitude ofg did not subsequently change, there were no asymptotic 
forms containing a metastable shock wave. The formation of asymptotic forms of a second type (that 
is, the decomposition of the initial metastable shock wave had begun) then occurred at fairly large values 
of o and the solution, after giving the initial value to the quantity g, no longer reverted to the initial 
form. For small values of r, the structure of the metastable shock wave was restored. 

The dependence of the initial data L@(X) and uf’(x) on x was chosen in the following manner. 
The steady-state structure of the metastable shock wave, taken from [6], was specified as the initial 
data u&%$). The functions u a = u:‘(x), represented by the continuous curves in Fig. 2, correspond to 
the structure of the metastable shock wave with the state in front of it u1 = Vi = 1, ~42 = lJ2 = 1 
(point A in Fig. 1) and a state behind the metastable shock wave u1 = u; = -1.05, u2 = u; = -0.45, 
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g = gi = 0.03, x = 1, v = 0.024. The parameterfin Eqs (2.1) was chosen such that, as the time increased, 
the metastable shock wave did not depart from the computational domain. Functions taken from [7] 
were chosen as @(x). These functions correspond to a certain stage in the one-dimensional decom- 
position of the same steady metastable shock wave as the result of an increase ing up to a certain value 
g = g2 with the previous values for the remaining parameters. The shock adiabatic curve for g2 = 0.1 
is shown in Fig. 1 (curve AEiKiMi). The point B when g2 = 0.1 lies in the domain where only one self- 
similar solution of the second type exists when v = 0. The functions use, plots of which are shown 
in Fig. 2 by the dashed curves represent the previously obtained [7] solutions of the problem of the 
decomposition of a metastable shock wave at a certain instant of time when the decomposition had 
already become irreversible. 

The initial data (3.2) are specified in such a way that, when y = yl, a change in the initial conditions 
occurs. In this formulation of the initial conditions, the difference equations poorly approximate the 
differential equations (2.1) as a consequence of the substantial difference between the functions L@(X) 
and U&~)(X). In order to remove this shortcoming in the initial conditions, “transition zones” were 
introduced such that, when y = yl, there was no stepwise change but a gradual change in the type of 
solution. 

transition zone) were specified The initial data in the range yl G y c yl + yP (yv is the width of the 
in the following manner 

L@‘(x) = (I - f(s,,up(x,+ f(s)u;2’(x) 

s=(Y-Y,)lY,v f(s) = s2(2 - s2) 

The function f(s) brings about smoothing. It satisfies the conditions 

f(0) = 0, f(1) = I, f’(0) = 0, f’(l) = 0 

The values of @ to the left of the domain of rapid change in these functions differ somewhat from 
the values ~2) in the same domain [7]. This difference is due to the fact that, during the decomposition 
of a metastable shock wave which has been reduced to the functions r.@(x), a slow shock wave departed 
on the left, which slightly changed the values of u, and emerged beyond the limits of the computational 
domain. Only fast waves, which are somewhat distorted by viscosity, are located within the limits of the 
computational domain. Before carrying out the calculations, it had been specially verified that the arrival 
of a slow wave on the left-hand boundary (x = 0) did not lead to the appearance of any appreciably 
reflected fast wave (which could distort the process being investigated). 

Taking account of the existence of transition zones, the initial conditions (3.2) were written as follows: 

(3.3) 

YI <y”y,+yp: u,=Q)(x) (3.4) 

(y, + y, < y < L): ua = ujl’w 

Fig. 2 

(3.5) 
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Test calculations of the initial-boundary-value problem (2.1), (3.1), (3.3)-(3.5) were carried out for 
different values of the parameter yP, and it was noted that when yP was increased (an increase in the 
thickness of the transition zone) the difference equations were a better approximation of the differential 
equation. As a result of the test calculations, a value of yP was determined such that the results of the 
calculations for a specified step size Ay with respect to the variabley and with a stepsize Ay/2 are identical 
within a specified accuracy (0.001). 

The calculations of the initial-boundary-value problem (2.1), (3.1), (3.3)-(3.5) enabled as to observe 
the process of the recovery of the structure of the metastable shock wave. We subsequently describe 
and demonstrate this process in graphs. 

In one of the versions of the calculation, the initial conditions (t = 0) were taken in the following 
form: the initial conditions (3.3) are specified in two successive layers (yj = const, Yj+i = yj + Ay, 
j = 1,2); then ten successive layers (j = 3,12) correspond to the transition zone with initial conditions 
(3.4) and two layers (j = 13,14) correspond to the initial conditions (3.5) (an unperturbed metastable 
shock wave). A graph of the function ui(x, y) when t = 0 is shown in Fig. 3. The initial-boundary-value 
problem which has been formulated was solved for different values of the parameter m. 

When m = 0,y = 2 (in the system of equations (2.1) there are no terms describing the interaction 
between layers with respect to the variable y), the following changes occurred when the computation 
time interval was increased. The asymptotic form of a solution of the second type is gradually formed 
in the five layers of the intermediate domain, adjacent to the boundary, which represents a solution of 
the second type. The asymptotic form of a solution of the first type is formed in the remaining layers 
of the intermediate domain. 

For small values of the parameter m (m = 0.5, 1, 1.3,2, 3) (M = 3.6735 X lo-‘, 7.347 X lo-‘, 1.4694 
x 10-6, 2.2041 x 10-6), Ay = 2, the asymptotic form of the first type is gradually formed in the transition 
layer (j = 12), which is adjacent to the layer (j = 13) in which the asymptotic form of the solution of 
the first type is specified when the computing time interval is increased. An asymptotic form of the first 
type is subsequently formed in the layer j = 11 and so on. The reorganization of the solution in each of 
the successive layers is accompanied by the emission of a slow wave which propagate’s to the left. This 
slow wave does not interact with the boundary (there are no perturbations reflected to the right). Thus, 
the asymptotic form of a solution of the first type is formed in the whole of the computational zone. 

The evolution of the solution of the initial-boundary-value problem when m = 30 (M = 2.2041 x 
lo-‘), Ay = 2 can be observed in Fig. 4(a-d) (t = 0.18, 0.6, 1.8, 2.7), where graphs of the functions 
ui(x, y) are plotted for successive instants of time. The start of the formation of the asymptotic form 
of a solution of the second type in layers j = 8, 9, 10 can be seen in Fig. 4(a). The asymptotic form of 
the solution of the second type is formed in layers j = 7-14 in Fig. 4(b). The completion of the formation 
of the asymptotic form of a solution of the second type can be seen in Fig. 4(c, d). Hence, form = 30 
and the existence of the same number of layers which represent the asymptotic form of a solution of 
the first type and of layers with an asymptotic form of the second type, the asymptotic form of a solution 
of the second type is formed, that is, the initial metastable shock wave ceases to exist. If the formulation 
of the initial-boundary-value problem is changed and a number of layers with an asymptotic form of 

Fig. 3 
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Fig. 4 

the first type is specified at the initial instant of time, which is substantially greater than the number of 
layers with an asymptotic form of the second type and, at the same time, the remaining parameters of 
the problem remain unchanged, an asymptotic form of the first type is formed in all the layers, that is, 
the metastable shock wave is restored. 

The evolution of the solution of the initial-boundary-value problem having a substantially larger 
characteristic dimension L than the initial-boundary-value problem in Fig. 4 and a substantially larger 
parameter m = 100 is shown in Fig. 5(a-d). When t = 0, the initial conditions (3.3) are specified in 
four successive layers (ri = const, Yj+i = yj + AJJ, i = 1, . . ., 4); then ten successive layers (j = 5, 14) 
correspond to the transition zone with the initial conditions (3.4), and 21 layers (j = 15,35) correspond 
to the initial conditions (3.5) (an unperturbed metastable shock wave) and Ay = 2. The formation of 
the asymptotic form of the first type (a metastable shock wave, the function ui(x, y)) can be observed 
in Fig. 5(a-c) (t = 0.6, 1.2, 2.4). At the following instant of time (t = 3.63, see Fig. 5d), it is clear that 
the metastable shock wave has been formed for all values ofy. The same initial-boundary-value problem 
was solved when m = 200, 1000 (M = 2.35 X lo-‘, 1.175 X 10m4). For these values of the parameter 
m, the metastable shock wave was restored for all values ofy with time. It has therefore been shown 
that the solution of the problem, when the width of the domain with an unperturbed metastable shock 
wave is sufficiently large, always leads to restoration of the metastable shock wave for any value of the 
parameter m. 

A similar initial-boundary-value problem was calculated for different values of the parameters gl, g2, 
yP, a different value of the segment (y1,y2) (which characterizes the size of the inhomogeneity), different 
positions of the initial point A and different positions of the point B, which describes the left-hand 
boundary condition. In particular, initial-boundary-value problems were investigated for those initial 
parameters for which the solution of the problem of the interaction between a metastable shock wave 
and a one-dimensional perturbation [7] showed that the decomposition of this wave is of an irreversible 
nature, that is, the initial metastable shock wave is not restored with time. The same metastable shock 
wave was restored in the interaction with a two-dimensional perturbation. 

The results of the calculations lead to the conclusion that perturbations which are periodic with respect 
to a variable along the front of the metastable shock wave (even if this perturbation is of a finite 
amplitude) do not lead to the decomposition of the metastable shock wave if the scale L, which 
characterizes the period of the perturbations along the wave front, is large (or the parameter M is small). 
When the metastable shock wave interacts with isolated perturbations, its restoration can also be 
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Fig. 5 

expected. In the case when L is small (M is a large number), decomposition of the metastable shock 
wave can occur under certain conditions. 

The stability of a metastable shock wave when x > 0 has therefore been demonstrated and, 
consequently, it is necessary to consider them as existing. This means that the conclusion that the solution 
of the problem of the decomposition of an arbitrary discontinuity for elastic media is non-unique in 
the case when viscosity and other factors, which “spread” discontinuities, are ignored, when considering 
unsteady processes, remains valid. 

This research was supported by the Russian Foundation for Basic Research (99-01-01150). 
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